Review Article

The prognostic value of p53 and WT1 expression in cancer: new molecular insights and epigenetics explanations lead to a new medical hypothesis

Ahed J Alkhatib* and Ilham Ahed Alkhatib

Published: 01 June, 2023 | Volume 7 - Issue 1 | Pages: 003-009

This is a literature review study focusing on the expression of p53 and WT1. Both the p53 and WT1 proteins are tumor suppressors, which means that they play a role in preventing the progression into cancerous ones. If these proteins are altered or deleted, they lose the ability to carry out their role, which might result in the development of cancer. The primary objectives of this study were to review the literature regarding the expression of both p53 and WT1 and to investigate their prognostic significance; and to discuss our new hypothesis regarding the ratios of expression of WT1/p53, as well as our model regarding acute myeloid leukemia. In brief, the objectives were to make the focus in the suggested hypothesis as well as collecting the supportive literature. According to the findings of the current research, the level of expression of WT1 and p53 can indicate either a favorable or unfavorable prognosis for cancer patients. Further, we demonstrated that the expression, not just as a quality variable but also as a quantity variable, may have a more substantial explanation in the progression of tumors than we had previously thought. According to the theory that was derived from this research, if the expression of WT1/p53 (the expression is given as a ratio) is somewhere around 4, then p53 acts as though it were wild type and offers protection against tumors. In order to verify this idea, we need to do additional study.

Read Full Article HTML DOI: 10.29328/journal.acst.1001034 Cite this Article Read Full Article PDF


WT1; p52; Expression; Prognosis; Tumor


  1. Lane DP. Cancer. p53, guardian of the genome. Nature. 1992 Jul 2;358(6381):15-6. doi: 10.1038/358015a0. PMID: 1614522.
  2. Scharnhorst V, van der Eb AJ, Jochemsen AG. WT1 proteins: functions in growth and differentiation. Gene. 2001 Aug 8;273(2):141-61. doi: 10.1016/s0378-1119(01)00593-5. PMID: 11595161.
  3. Oosterhuis JW, Looijenga LH. Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer. 2005 Mar;5(3):210-22. doi: 10.1038/nrc1568. PMID: 15738984.
  4. Gao J, Zhang X, Liu Y, Liu Y, Zheng L, Li Z. Prognostic value of co-expression of Wilms' tumor-1 and p53 proteins in nasopharyngeal carcinoma. J Cancer Res Ther. 14(2):361-365. doi: 10.4103/jcrt.JCRT_1048_16. PMID: 29578110.
  5. Deeg HJ, Lin A, Leisenring W. WT1 and p53 gene expression in de novo acute myeloid leukemia: associations with clinicopathologic and cytogenetic features, and outcome. Leukemia. 2003;17(5):976-83. doi: 10.1038/sj.leu.2402924. PMID: 12704416.
  6. Zhang H, Jin J, Chen H. WT1 gene methylation as a prognostic biomarker in acute myeloid leukemia. Leuk Res. 2015; 39(11):1247-54. doi: 10.1016/j.leukres.2015.08.015. PMID: 26365045.
  7. Guan X, Zhong Y, Liu Y. The prognostic and therapeutic implications of the methylation status of p53 and RASSF1A promoter in patients with breast cancers. Oncotarget. 2017; 7;8(6):10014-10026. doi: 10.18632/oncotarget.14446. PMID: 28060729.
  8. Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell. 2016 Jun 30;166(1):21-45. doi: 10.1016/j.cell.2016.06.028. PMID: 27368099.
  9. Liu X, Jiang L, Wang A, Yu J, Shi F, Zhou X. MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett. 2009 Dec 28;286(2):217-22. doi: 10.1016/j.canlet.2009.05.030. Epub 2009 Jun 21. PMID: 19540661; PMCID: PMC2783372.
  10. Wang Y, Shi J, Chai K, Ying X, Zhou BP. The Role of Snail in EMT and Tumorigenesis. Curr Cancer Drug Targets. 2013 Nov;13(9):963-972. doi: 10.2174/15680096113136660102. PMID: 24168186; PMCID: PMC4004763.
  11. Fan L, Li Y, Chen J, Wang X, Qu J, Jia X. Prognostic value of p53 expression in breast cancer: a retrospective study based on a tissue microarray. Cancer Cell Int. 2019; 19:262.
  12. Yang S, Yang C, Yu X, Geng Y, Li L. High p53 expression is associated with poor prognosis in ovarian cancer. Oncol Lett. 2019; 18:679–86.
  13. Yoshimura M, Sakurai T, Tsuchiya K, Ogata K, Takahashi M, Terada M. Prognostic impact of p53 expression on esophageal squamous cell carcinoma patients treated with neoadjuvant chemotherapy. Esophagus. 17: 52-60.
  14. Oji Y, Miyoshi S, Maeda H, Hayashi S, Tamaki H, Nakatsuka S, Yao M, Takahashi E, Nakano Y, Hirabayashi H, Shintani Y, Oka Y, Tsuboi A, Hosen N, Asada M, Fujioka T, Murakami M, Kanato K, Motomura M, Kim EH, Kawakami M, Ikegame K, Ogawa H, Aozasa K, Kawase I, Sugiyama H. Overexpression of the Wilms' tumor gene WT1 in de novo lung cancers. Int J Cancer. 2002 Jul 20;100(3):297-303. doi: 10.1002/ijc.10476. PMID: 12115544.
  15. Miyoshi Y, Ando A, Egawa C, Taguchi T, Tamaki Y, Tamaki H, Sugiyama H, Noguchi S. High expression of Wilms' tumor suppressor gene predicts poor prognosis in breast cancer patients. Clin Cancer Res. 2002 May;8(5):1167-71. PMID: 12006533.
  16. Stavnes HT, Nymoen DA, Langerød A. The prognostic value of HOX gene expression in ovarian cancer patients. Int J Cancer. 2013; 133(4): E395-E401. doi:10.1002/ijc.28111.
  17. Yoshikawa K. Combined use of subcellular localization of WT1 and p53 status enhances the prognostic stratification of breast carcinoma. Modern Pathology. 2010; 23(2): 178-189. doi: 10.1038/modpathol.2009.144.
  18. Zheng G. Co-expression of Wilms' tumor 1 and p53 predicts poor prognosis of ovarian cancer. Oncology Letters. 2017; 14(2): 249-254. doi: 10.3892/ol.2017.6153.
  19. Zhu Y. Prognostic significance of co-expression of Wilms' tumor 1 and p53 proteins in esophageal squamous cell carcinoma. Medical Oncology. 2012; 29(4): 2877-2883. doi: 10.1007/s12032-012-0282-6.
  20. Liu D, Wu K, Yang Y, Zhu D, Zhang C, Zhao S. Long noncoding RNA ADAMTS9-AS2 suppresses the progression of esophageal cancer by mediating CDH3 promoter methylation. Mol Carcinog. 2020 Jan;59(1):32-44. doi: 10.1002/mc.23126. Epub 2019 Oct 16. Erratum in: Mol Carcinog. 2022 Apr;61(4):435-436. Erratum in: JPEN J Parenter Enteral Nutr. 2022 Mar;46(3):737. PMID: 31621118.
  21. Zhang C, Shao S, Zhang Y, Wang L, Liu J, Fang F, Li P, Wang B. LncRNA PCAT1 promotes metastasis of endometrial carcinoma through epigenetical downregulation of E-cadherin associated with methyltransferase EZH2. Life Sci. 2020 Feb 15;243:117295. doi: 10.1016/j.lfs.2020.117295. Epub 2020 Jan 9. PMID: 31927050.
  22. Kouzarides T. Chromatin modifications and their function. Cell. 2007 Feb 23;128(4):693-705. doi: 10.1016/j.cell.2007.02.005. PMID: 17320507.
  23. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012 May 29;13(7):484-92. doi: 10.1038/nrg3230. PMID: 22641018.
  24. Hsu NC, Huang YF, Yokoyama KK, Chu PY, Chen FM. Correlation between promoter hypermethylation of the WT1 gene and pathologic features in breast cancer patients. Oncol. Rep. 2007; 17:1277–1282. doi: 10.3892/or.17.6.1277.
  25. Choi JH, Oh YL, Kim JH. Prognostic implications of promoter CpG island hypermethylation and repetitive DNA hypomethylation in invasive breast cancer. Oncol Rep. 2010; 23(3):869-875. doi:10.3892/or_00000735.
  26. Rathi A, Virmani AK, Schorge JO, Elias KJ, Maruyama R, Minna JD, Mok SC, Girard L, Fishman DA, Gazdar AF. Methylation profiles of sporadic ovarian tumors and nonmalignant ovaries from high-risk women. Clin Cancer Res. 2002 Nov;8(11):3324-31. PMID: 12429618.
  27. Bao X, Ren T, Huang Y, Sun K, Wang S, Liu K, Zheng R. WT1 gene methylation as a prognostic marker in acute myeloid leukemia. Leukemia research. 2014; 38(2):218-223. doi: 10.1016/j.leukres.2013.11.008.
  28. Li X, Zhang Y, Zhang H, Liu X, Gong T, Li M. Epigenetic silencing of MicroRNA-375 induced by histone modifications promotes cell invasion in breast cancer. Oncology Reports. 2007; 18(5):1225-1231.
  29. Yu D, Liu X, Han G. Loss of WT1 expression and its prognostic significance in adult de novo acute myeloid leukemia. Leuk Lymphoma. 2015; 56(6):1747-1755. doi:10.3109/10428194.2014.964711.
  30. Sato N, Fukushima N, Chang R, Matsubayashi H, Goggins M. Differential and epigenetic gene expression profiling identifies frequent disruption of the RELN pathway in pancreatic cancers. Gastroenterology. 2006 Feb;130(2):548-65. doi: 10.1053/j.gastro.2005.11.008. PMID: 16472607.
  31. Choi IS, Estecio MR, Nagano Y, Kim DH, White JA, Yao JC, Issa JP, Rashid A. Hypomethylation of LINE-1 and Alu in well-differentiated neuroendocrine tumors (pancreatic endocrine tumors and carcinoid tumors). Mod Pathol. 2007 Jul;20(7):802-10. doi: 10.1038/modpathol.3800825. Epub 2007 May 4. PMID: 17483816.
  32. Kirschner KM, Baltin J, von Figura G. The Wilms' tumor suppressor Wt1 activates transcription of the p53-family member p73 in vitro. Oncogene. 1999; 18(22):3963-3971. doi:10.1038/sj.onc.1202814
  33. Fidlerova J, Mysliwietz J, Alkhamis O. Overexpression of Wilms' tumor 1 gene in p53-null myeloid precursor cells enhances their proliferation, survival and sensitivity to chemotherapeutic agents. Oncogene. 2010; 29(15):2213-2226. doi:10.1038/onc.2009.507.
  34. Schumacher B, Han S, Zhang Z. Dual regulation of BRCA1 by p21-dependent Inhibition of Breast Cancer Cell Proliferation. Cancer Res. 2013; 73(14):4624-4634. doi:10.1158/0008-5472.CAN-12-4356.
  35. Oji Y, Tatsumi N, Fukuda M. The Wilms' tumor gene WT1-OCT4 axis regulates glioblastoma proliferation. Oncotarget. 2017; 8(28):45483-45494. doi: 10.18632/oncotarget.17439.
  36. Zhang X, Liu S, Hu T. Wilms' tumor 1 protein represses the expression of the tumor suppressor interferon regulatory factor 8 in human breast cancer cells. Oncol Lett. 2018; 15(6):10091-10098. doi: 10.3892/ol.2018.8492.
  37. Bani-Ahmad MA, Al-Sweedan SA, Al-Asseiri MA, Alkhatib AJ. A Proposed Kinetic Model for the Diagnostic and Prognostic Value of WT1 and p53 in Acute Myeloid Leukemia. Clin Lab. 2018 Mar 1;64(3):357-363. doi: 10.7754/Clin.Lab.2017.170915. PMID: 29739109.
  38. Alkhatib AJ. Constructing Kinetic Mathematical Models to Predict Cancer Behavior: A New Mirror Image as a New Medical Hypothesis. Journal of Oncology Translational Research. 2020; 6(1). https://doi.org/10.25215/0601.001.


Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?