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Abstract

The ovarian serous Cystadenocarcinoma shared large number of deaths in gynecologic 
carcinoma. It has various numbers of molecular events from initiation to progression and at 
advance stage, surgery is the end product of such molecular signaling. We assess in this study 
the whole mechanistic view of TNFSF10 network which has the ideal apoptotic causing identity. 
We used fresh insilico strategy to uncover the secrets and inter-links from its protein-protein 
interaction complex. We retrieved the TNFSF10 signaling network from STRING database (www.
string-db.org). The network contains 25 nodes and 152 edges with clustering presentation. After 
retrieval, we performed gene enrichment and characterization analysis of network from WebGestalt 
toolkit (www.webgestalt.com). Finally, we examined the participation of whole network in ovarian 
cancer progression from cBioPortal, a cancer genomic data portal (www.cbioportal.org). Our 
results showed that majority of cases have loss of function of death receptors (DR4 and DR5) 
that are the main unit of initiation of apoptotic signaling. Most of downstream signaling members 
showed amplifi cation that regulates cell proliferative pathways including NFkB pathway. TNFSF10 
cluster has loss of function and in future it gain attention for further research studies to discover 
its interactome level view for valuable therapy. FAS cluster has large number of members and 
majority showed amplifi cation rendering them as co-targets for combinational drug designing. 
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Introduction 

Tumor Necrosis Factor Super Family 10 (TNFSF10) is a member of TNF super family 
positioned on chromosome 3 that code protein of 20kDa which consist of 4 intron and 
5 exon. TNFSF10 protein has 281 amino acids regulated mainly as a transmembrane 
protein and releases protein as a soluble form after C-terminus cleavage [1-3]. 
The primary function of TNFSF10/TRAIL is the induction of apoptotic process in 
transformed cells and mostly functional in immune cells [4-6]. TNFSF10 trigger the 
extrinsic apoptotic mechanisms by binding with death receptor 4 (DR4) and death 
receptor 5 (DR5). It also regulates NFkB and MAPK8 pathways that play key role in cell 
survival and growth [7]. TNFSF10 perform vital role in development of death-inducing 
signaling complex (DISC) that contains CFLAR, FADD, CASP8 and death receptors [8]. 
In carcinogenesis metastatic cells block the function of TNFSF10 of DISC development 
by inhibition of decoy receptors including DCR1, DCR2, OPG (Osteoprotegerin) and 
overexpression of anti-apoptotic agents like BIRC2, CFLAR and NFkB [9-11]. Some 
studies explore TGM2, EGFR, MCL1 and PTGS2 pathways that counteract TNFSF10 
activity [12,13]. 

To study the fundamental signiϐicance of TNFSF10/TRAIL in progression of ovarian 
carcinoma we practice novel insilico approach to determine not only its individual 
expression but also with network level holistic view. In this approach we uncovered 
pathway interactors to ϐind out therapeutic targets. 
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Insilico protocol 

We retrieved TNFSF10 signaling cascade from STRING database (www.string-db.
org) which is huge collection of protein-protein interaction networks with different 
topological, ontological and statistical tools that perform function on scoring pattern 
which showed the authenticity of a network. We process the enrichment and charac-
terization analysis of a TNFSF10 cascade in WebGestalt toolkit (www.webgestalt.com) 
that gives us its ontological view with multiple characteristics for its deep understand-
ing. We determined the cascade participation in disease progression by WebGestalt. 
Finally we use cBioPortal a cancer genome platform (www.cbioportal.org) that con-
tains large number of cancer datasets with ϐine graphical presentation, enrichment 
tools, topological analysis tools and mutation identiϐiers that comprehensively ϐind out 
oncogenic activities. 

Results 
TNFSF10 Signaling cascade mining from STRING database

TNFSF10 signaling cascade retrieved from STRING database. The signaling cascade 
contain various topological characters such as 25 nodes, 152 edges, 12.2 average 
node degree and 0.879 average local clustering coefϐicient. The signaling cascade 
showed the properties of scalable vector network. The cascade has strong protein-
protein interactions of highest conϐidence score of 0.900. The hub proteins are densely 
connected with other proteins in cascade (Figure 1.1). 

STRING database allowed us to draw functionally associated clusters that bind 
with each other in the form of inter cluster association and inside cluster association is 
intra cluster that showed the strength of interaction. The clustering of a network has 
enormous signiϐicance for drug targeting. We obtain 5 clusters by K-MEANS clustering 
algorithm of STRING database. First TNFSF10 cluster contain seven members including 
TNFRSF11B, TNFRSF10C, TNFRSF10A, TNFRSF10B, CASP3 and TNFRSF10D. Second 
IKBKB cluster contains ϐive members including RIPK1, TRAF2, CHUK and MAP3K1. 
Third MAPK1 cluster has MAPK3. Forth SMPD1 cluster consist on only one member. 
Fifth CASP8 cluster is the largest cluster that contains ten members including FAS, BID, 
DAP3, CFLAR, FASLG, TRADD, FADD, RIPK3 and CASP10 (Figure 1.2). 

Figure 1.1: TNFSF10 signaling cascade of 25 nodes and 152 edges which showed proteins and their interactions 
respectively. The multiple color lines indicate various interaction types among proteins on system level.
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TNFSF10 signaling cascade components gene enrichment ontology analysis 
by WebGestalt toolkit

TNFSF10 signaling cascade components involved in most important programmed 
cell death process that help in organogenesis at embryonic level and encounter 
tumorigenesis. In apoptosis cell undergo certain steps that lead to its death in which cell 
stress causing autophagy is known as intrinsic pathway and due to cellular signaling 
cell death is called extrinsic pathway (Table 1.1). 

TNFSF10 pathway components are involved in various molecular mechanisms to 
initiate apoptosis. They interact with death receptors, decoy receptors, Osteoprotegerin 
and development of DISC by web like binding with FADD, CASP8 and other pro-
apoptotic ingredients (Table 1.2).

TNFSF10 pathway components are widely dispersed in cellular microenvironment 
from cell membrane to cytosol to mitochondria that trigger apoptotic signaling 
pathways that ultimately affect on gene regulation in nucleus (Table 1.3).

TNFSF10 components are involved in various other intra cellular signaling pathways 
that are the regulators of cell proliferation, migration, differentiation, survival, growth, 
death, stress response and metastasis (Table 1.4).

This is most appropriate result to understand the signiϐicance of TNFSF10 signaling 
components in disease causing and progression. This signaling network acts as a 
protective unit but due to its deregulation several viral and pathogenic problems 
are developed. The abnormal signaling observed in certain carcinomas and immune 
diseases (Table 1.5).

TNFSF10 signaling cascade core analysis of exploring its involvement in 
carcinoma by cBioPortal

We use cBioPortal a cancer genome platform that provide large collection of 
cancer dataset with attractive graphical presentation and comprehensive oncogene 
detection with accurate ratio and site of mutation. We gain a dataset of ovarian serous 
Cystadenocarcinoma (TCGA, Provisional) that contain 311 samples in which 214 cases 
showed alteration in which 182 cases showed ampliϐication, 20 cases showed deletion, 
10 cases showed multiple alteration and 2 cases indicate mutation. The whole signaling 
cascade showed 68.8% alteration in which 58.5% ampliϐication, 6.4% deletion, 3.2% 
multiple alteration and 0.6% mutation (Figure 1.3).

Figure 1.2: TNFSF10 cascade clusters in which dotted lines showed inter cluster and straight lines indicate intra 
cluster association.
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Table 1.1: The WebGestalt process of biological characterization analysis of TNFSF10 pathway.
S. NO BIOLOGICAL PROCESSES NO. OF PROTEINS 

1  Extrinsic apoptotic signaling pathway 13
2 Apoptotic process 23
3 P rogrammed cell death 23
4 Death 23
5 Ce ll death 23
6 Apo ptotic signaling pathway  13
7 Regu lation of execution phase of apoptosis 13
8 Activ ation of cysteine-type endopeptidase activity involved in apoptotic process 11
9 Activation of cysteine-type endopeptidase activity  11

Table 1.2: WebGestalt process of molecular function enrichment analysis of TNFSF10 cascade.
S. NO MOLECULAR FUNCTIONS NO. OF PROTEINS 

1  Tumor necrosis factor receptor superfamily binding 7
2 TRAIL binding 4
3 T umor necrosis factor receptor binding 5
4 Cy tokine receptor binding  7
5 Pro tein binding 24
6 Enzy me binding  11
7 Death  receptor binding 3
8 Recept or signaling protein serine/threonine kinase activity 4
9 Protein  serine/threonine kinase activity 7

10 Cysteine -type endopeptidase activity 4

Table 1.3: WebGestalt process of cell localization ontology analysis of TNFSF10 cascade members.
S. NO CELL LOCALIZATION NO. OF PROTEINS 

1 Death-inducing signaling complex 5
2  Membrane raft 9
3 C D95 death-inducing signaling complex 3
4 Cy tosol  15
5 CD4 0 receptor complex 3
6 Plas ma membrane part 13
7 Recep tor complex 5
8 Plasma  membrane 17
9 Cell pe riphery 17

10 I kappaB  kinase complex 2

Table 1.4: WebGestalt process of characterization of pathway to pathway interaction analysis of TNFSF10 cascade.
S. NO KEGG PATHWAYS NO. OF PROTEINS 

1 Apoptosis 18
2 Natural killer cell mediated cytotoxicity 11
3 RIG-I-like receptor signaling pathway 9
4 Chagas disease 9
5 Pathways in cancer 11
6 MAPK signaling pathway 9
7 Toll-like receptor signaling pathway 7
8 Hepatitis C 7
9 Cytokine-Cytokine receptor interaction 8

10 Alzheimer disease  7

Table 1.5: WebGestalt process to characterize TNFSF10 complex components in disease.
S. NO Disease  enrichment analysis NO. OF PROTEINS 

1 Necrosis 23
2 Death 21
3 Lymphoproliferative disorder s 12
4 Cancer or viral infections 14
5 Drug interaction with drug 11
6 Brain death 8
7 Lymphatic diseases 10
8 Lentivirus infections 10
9 Hodgkin disease 8

10 Infection 10
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Discussion

The process of eradicating the harmful cells through internal/external stimuli is 
called apoptosis that undergo two basic signaling pathways which are intrinsic and 
extrinsic pathways. In mitochondria Bcl2 proteins family trigger and regulate intrinsic 
pathway while TNF family with receptors trigger and regulate extrinsic apoptotic 
pathway [14-17]. Due to sequence similarity of TNF and FASLG extracellular domain 
ϐirst time TNFSF10 was explored that has four receptors of his own family that are 
TNFRSF10A/DR4, TNFRSF10B/DR5, TNFRSF10C/DCR1 and TNFRSF10D/DCR2. Both 
death receptors triggered apoptosis and decoy receptors inhibit TNFSF10 induced 
apoptosis [18]. TNSFSF10 interact with its death receptors on cell membrane that 
deploy FADD and CASP8 that developed DISC (death-inducing signaling complex). 
The deployment and activation of CASP8 trigger the regulation of CASP3 that initiate 
comprehensive apoptotic process [19,20]. The activated CASP8 also target the BID 
that undergo ϐirstly in cleavage and then stimulate the BAX and BAK pro-apoptotic 
components that are releasing cause of Cytochrome C. The apoptosome development 
occurred by the combination of ATP, CASP9, Cytochrome C and APAF1 that trigger the 
cleavage of CASP3 that amplify the whole TNFSF10 induced apoptotic signaling [21-
27]. Several studies reported the contribution of TNFSF10 mediated signaling cascade 
in meningitis, inϐlammation, diabetes, asthma, immune diseases and carcinogenesis 
[28-35]. In this work we apply fresh insilico procedure that determines the holistic 
view of TNFSF10 mediated apoptotic signaling complex. We interestingly identiϐied 
TNFSF10 32% overexpression that is the possible effect of immune microenvironment 
interaction with ovarian tumor cells. This expression indicates the better survival 
of ovarian cancers which is the conϐirmation of earlier studies [36]. We determine 

 

Figure 1.3: TNFSF10 signaling network components participation graph in ovarian carcinoma.
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that TNFSF10 death receptors showed loss of function in context of deletion that are 
located on chromosome 8 which undergo mostly loss of function due to deletion or 
mutation. They contain highly conserved region of 95 amino acids of death domains 
which interact with TNFSF10 and initiate apoptotic process. Their loss of function is 
reported in several carcinomas including head and neck, breast and lung carcinoma 
[37-42]. The deletion of death receptors ϐinishes the ability of DISC development that 
is the organizer of apoptotic signaling [43]. Both receptors are functionally associated 
with each other and loss of function makes TNFSF10 functionally insigniϐicant [44,45]. 
In ovarian serous carcinoma these are the key drug targets for normal development of 
DISC and tumor cells eradication. The decoy receptors showed deletion that normally 
heterotrimeric complex that prevent apoptosis via deactivation of CASP8 [46-49]. 
TNFRSF11B showed 32% overexpression which is secreted protein with lack of 
transmembrane domain and participate in inhibition of TNFSF10 mediated pathway 
[50]. More importantly CASP3 showed deletion in most ovarian serous carcinoma cases 
that is the end target of activated CASP8 for proper initiation of apoptotic signaling. 
TNFSF10 cluster contains mostly those members that undergo loss of function due 
to deletion so required further research to explore their network view that are the 
causing agent of deletion. 

Our work determined the IKBKB overexpression that is the regulator of NFkB 
signaling pathway and required for IKBα/β phosphorylation [51]. The IKBKB cluster 
also has the overexpression of RIPK1 and TRAF2 that are the inducer of NFkB 
anti-apoptotic proliferative pathway [52,53]. This cluster explains the role of cell 
proliferation by NFkB signaling through ampliϐied TNFSF10 expression. In this study 
the FAS cluster has large number of members that showed its functional diversity. FAS 
showed loss of function in context of deletion, it played a vital role in apoptotic signaling 
mechanisms of immune cells, destruction of cells by T-Cell-mediated pathway and its 
deregulation reported in various diseases [54,55]. CFLAR and FASLG both is negative 
regulator of TNFSF10 pathway that showed ampliϐication in results. TRADD showed 
loss of function which is the main linker of FADD and downstream signaling activators 
of apoptosis [56]. FADD and CASP8 both showed ampliϐication but due to loss of 
function of various TNFSF10 cascade key members they behave functionally inactive 
in pro-apoptotic context and prevent TNFR1 signaling [57-58]. The MAPK cluster 
showed overexpression that involved in cell survival and proliferation in response of 
various forms of stress. 

Our study conϐirmed the dual and unique role of TNFSF10 mediated signaling in 
which they induce cell proliferation signals by overexpression of FADD, RIP1, TRAF2, 
IKBKB and CFLAR which ultimately activate the NFkB signaling pathway which further 
regulate ErK2, JNK, MAPK and PI3K signaling proliferative pathways. Several cancer 
studies reported such role in progression and promotion of metastasis [59-65]. In 
this approach we determined the TNFSF10 mediated signaling cascade participation 
in ovarian serous carcinoma and ϐind interesting links of anti-apoptotic /proliferative 
channels. This effort addresses the basic theme of TNFSF10 signaling pathway and 
increase the comprehension of its patho-physiology before their therapy.

Conclusion

System biology deals the phenomenon based on inter-link events in which signaling 
cascades perform a major role in regulation of system level mechanisms. Day by day 
secretes of interactomics are uncovered by insilico studies. In this study we examined 
TNFSF10 signaling network to assess its core mechanistic view for its functioning in 
progression of carcinogenesis. Interestingly we identiϐied several unique interactions 
that showed overexpression and promote cell proliferation which is the negative sign of 
this pathway. There is complex story of TNFSF10 network members that show diverse 
sensitivity to stress and mutagens. We analyzed the network on cluster based in which 
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TNFSF10 cluster show maximum loss of function that is main cause of promotion 
of tumorigenesis and majority of members of all other clusters of network showed 
overexpression that promote cell survival and regulation of proliferative pathways. In 
future our study proved as a repository of markers for TNFSF10 network based drug 
designing.
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